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ABSTRACT Many cells use oscillations in calcium concentration to transmit messages. The oscillations largely result from an
influx of calcium into the cytosol from the endoplasmic reticulum (ER), followed by an efflux of calcium from the cytosol back into
the ER. The sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump pumps calcium into the ER. It binds calcium
on the cytosolic side and releases it on the ER side and in the delay between binding and release, calcium is buffered by the
pump. We developed a model of a buffering SERCA pump and investigated whether including this in a model of calcium
oscillations has any significant effects. We found that the oscillations produced when using the SERCA pump, which does not
buffer calcium, have a larger amplitude and a slightly smaller period than when using the buffering SERCA pump. We show that
the buffering SERCA pump shows adaptation to a stimulus, and we demonstrate that, by using a bidirectional SERCA pump,
we are able to eliminate futile cycling of calcium between the cytosol and ER when the cell is at rest.

INTRODUCTION

Calcium oscillations in nonexcitable cells act as a messenger

between extracellular stimulation and cell function, such as

secretion of enzymes. In many cell types, the oscillations are

the result of an influx of calcium into the cytosol from the

endoplasmic reticulum (ER) through the inositol trisphos-

phate receptors (IP3R) and the ryanodine receptors (RyR),

followed by reuptake of calcium into the ER through the

sarcoplasmic/endoplasmic reticulum calcium ATPase (SER-

CA) pumps. Numerous models have been constructed to

reproduce calcium oscillations, and all these models contain

a model of the SERCA pump. The SERCA pump uses the

chemical energy produced from the conversion of adenosine

triphosphate (ATP) into adenosine diphosphate (ADP) to

transport calcium ions across the membrane from the cytosol

to the ER, against a concentration gradient.

Fig. 1 gives an overview of calcium transport in a

nonexcitable cell. An agonist binding to a cell membrane

receptor stimulates the production of IP3. The increase in IP3
levels triggers release of calcium from IP3R on the ER, which

triggers further release of calcium from the ER via the IP3R as

well as the RyR. There is also a small leak of calcium into the

cytoplasm from outside the cell. Calcium is removed from the

cytosol via pumps in the cell membrane, which take it back

outside the cell, and SERCA pumps, which take it back into

the ER.

In the past, the model of the SERCA pump has been

considered less important than models of calcium release

from the ER through IP3R and RyR. Consequently, while

detailed models of release mechanisms were developed, less

work was done to develop realistic models of calcium uptake.

Although complex models of the SERCA pump have been

used, such as the six-statemodel ofYano et al. (1), the SERCA

pump has frequently been modeled by a simple Hill equation

(2–4) or by the Hill equation with additional terms to account

for modulation by ER calcium (5,6). However, the SERCA

pump model is as important as models of IP3R and RyR.

A calcium signal cannot be effective unless the cytosolic

calcium concentration is able to return to a low level after

release, and the mechanism by which this occurs will affect

properties such as the amplitude and period of the signal. This

then raises the question of how the SERCA pump should be

modeled.

When calcium ions are transported into the ER through

the SERCA pump, they are bound to pump proteins on the

cytosolic side of the membrane. The protein undergoes a

change in conformation, which is powered by the energy

released from the conversion of ATP to ADP, and the cal-

cium ions are then released on the ER side of the membrane.

Although the calcium ions are bound to the pump protein,

they do not contribute to the calcium concentration inside the

cytosol or to the calcium concentration inside the ER, so the

calcium is being buffered by the SERCApump. Because there

is a large amount of pump protein present (Bers (7) estimates

15–75 mmol/L Cyt in a cardiac ventricular cell), the pump is

able to bind a large amount of calcium and so the buffering

effect of the pump is significant. When the SERCA pump

transports calcium, the amount of calcium bound on the

cytosolic side of the membrane may not always be equal to

the amount released on the ER side, as some calcium remains

bound to the pump protein. We have investigated whether a

buffering SERCA pump model has a significantly different

effect on the calcium transient than the simpler nonbuffering

SERCA pump model.

We have compared the effect of using buffering and

nonbuffering SERCA pumps in a modified version of the

Sneyd et al. (6) model of calcium oscillations in the apical

region of pancreatic acinar cells. However, our results are of

a general nature and not specific to this type of cell. We have

modified the model by Sneyd et al. (6) to include calcium
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buffers (other than the buffering SERCA pump) in the

cytosol and ER. We modeled these endogenous buffers by

using one effective buffer in the cytosol and one effective

buffer in the ER, rather than modeling the effect of spe-

cific buffers. When the buffering SERCA pump is used with

the concentration of pump protein, Pt ¼ 15 mmol/L Cyt,

the oscillations have a significantly smaller amplitude and

slightly larger period compared to the results when using the

nonbuffering SERCA pump. As Pt is increased, the ampli-

tude decreases and the period increases, as the pump is able

to buffer more calcium. We also show that the buffering

SERCA pump is sensitive to changes in the cytosolic cal-

cium concentration, and adapts to a maintained stimulus.

We have also addressed the issue of futile cycling at rest. If

the SERCApumpmodel is based on theHill equation, such as

the model given by Sneyd et al. (6), then when the system is at

steady state, calcium is continually pumped into the ER and

this is balanced by a leak of calciumout of the ER.However, it

has been suggested that this is a waste of energy and the

amount of futile cycling should be very low. Other models (8)

have incorporated more complex SERCA pumps, enabling

them to eliminate futile cycling when the cell is at rest. Using

the buffering SERCApumpmodel presented here, we are also

able to achieve zero futile cycling at rest, so that at steady state,

there is no SERCA pump activity.

THE SERCA PUMP MODEL

Various models have been proposed for modeling the

SERCA pump. Maclennan et al. (9) suggest a reaction cycle

involving four transitions. These include the binding of

cytosolic calcium, the change of conformation powered by

ATP, the release of calcium on the ER side of the membrane,

and the return to the original conformation. Others suggest a

larger number of reactions in the cycle. For example, Stokes

and Green (10) give a scheme involving eight reactions.

Dode et al. (11) describe a model with six transitions, which

is similar to the reaction cycle from Maclennan et al. (9). In

the scheme of Maclennan et al. (9), each change of confor-

mation occurs during the same transition as the phosphoryl-

ation or dephosphorylation of the pump, whereas the model

of Dode et al. (11) uses two transitions. A. C. Ventura and

J. Sneyd (unpublished) have used a four-state model of the

same form as that of Maclennan et al., but in their model only

one calcium ion is bound during each pump cycle rather than

two. The SERCA pump model presented here is based on the

four-state diagram given in Fig. 2 A, which contains the same

transitions as the reaction cycle given by Maclennan et al. (9).

We begin with a four-state model to represent the buffering

SERCApump, and this is reduced to a two-statemodel, which

retains the pump’s ability to act as a buffer. The two-state

model has been used in the whole cell model. To compare the

buffering SERCA pump with a pump that does not have the

capacity to buffer, we further reduced the two-state model to

obtain a pump model that is an instantaneous function of the

cytosolic and ER calcium concentrations. We refer to this

model as the ‘‘nonbuffering SERCA pump.’’

The buffering SERCA pump model

Fig. 2 A shows the state diagram used to derive the equations

that govern the flux through the buffering SERCA pump. In

this model, two calcium ions bind to the pump protein on the

cytosolic side. The pump then changes its conformation

from the cytosolic to the ER side using the energy released

when ATP is converted to ADP. Two calcium ions are then

FIGURE 2 (A) State diagram of the buffering SERCA pump. The value

X1 gives the concentration of pump protein on the cytosolic side with no

calcium bound, X2 gives the concentration of pump protein on the cytosolic

side with two calcium ions bound, and Y1 and Y2 are analogous on the ER

side. The value c gives the calcium concentration on the cytosolic side and ce
gives the calcium concentration on the ER side. (B) Reduced-state diagram

of the SERCA pump, formed by assuming the rate constants k1, k�1, k3, and
k�3 are fast. The value X gives the concentration of pump protein on the

cytosolic side, and Y gives the concentration on the ER side.

FIGURE 1 The binding of an agonist stimulates IP3 production. The

agonist activates the membrane-bound enzyme phospholipase C, which

hydrolyzes phosphatidylinositol bisphosphate into IP3 and diacylglycerol.

IP3 activates IP3R, releasing calcium from the ER. This triggers further

release of calcium from the ER through the IP3R and RyR. There is a

positive feedback mechanism whereby calcium can activate phospholipase

C. Calcium ions are bound to buffers in the cytosol and ER. Calcium is

removed from the ER through the SERCA pump and membrane pump.
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released on the ER side and the pump changes conformation

back to the cytosolic side. There is a delay between the bind-

ing and release of the ions, and during this time the bound

calcium is not in the ER or the cytosol, so is being buffered

by the pump. We denote the cytosolic calcium concentration

by c and the ER calcium concentration by ce. Using the state

diagram and the law of mass action, we can write down the

system of equations to describe the pump kinetics as

X1 1X2 1
1

g
ðY1 1 Y2Þ ¼ Pt g ¼ Vol: Cyt:

Vol: ER
; (1)

dX1

dt
¼ k4Y1

1

g
� k�4X1 � k1c

2
X1 1 k�1X2; (2)

dX2

dt
¼ k1c

2
X1 � k�1X2 1 k�2Y2

1

g
� k2X2; (3)

dY1

dt
¼ k3Y2 � k�3c

2

eY1 � k4Y1 1 k�4X1g; (4)

dY2

dt
¼ k2X2g � k�2Y2 � k3Y2 1 k�3c

2

eY1; (5)

dc

dt
¼ f ðc; ceÞ � 2k1c

2
X1 1 2k�1X2; (6)

dce
dt

¼ Fðc; ceÞ1 2k3Y2 � 2k�3c
2

eY1; (7)

where f(c, ce) and F(c, ce) denote all the other reactions. In

the model given here, f(c, ce) includes the flux through the

IP3R, the influx from outside the cell, the efflux through the

plasma membrane pump, and binding and release by the en-

dogenous cytosolic buffer. F(c, ce) includes the flux through

the IP3R and binding and release by the endogenous ER

buffer. Note that X1, X2, and c are in the units mmoles per liter

cytosol (mmol/L Cyt) and Y1, Y2, and ce are in the unitsmmoles

per liter ER (mmol/L ER).

We can simplify the model, but retain the buffering effect

of the pump, by assuming the transitions between X1 and X2

are fast, and the transitions between Y1 and Y2 are fast. Fig. 2 B
describes this simplified model. The derivation is given in

Appendix A, and results in the following system of differ-

ential equations for modeling the SERCA pump,

dc

dt
11

4cK
2

1

ðK2

1 1 c
2Þ2

X

 !
¼ f ðc; ceÞ �

2c
2
K

2

1ðk2 � k�4Þ
ðK2

1 1 c
2Þ2

X

� 2ðc2k4 � k�2K
2

3K
2

1c
2

eÞ
ð11K

2

3c
2

eÞðK
2

1 1 c
2Þ
ðPt � XÞ;

(8)

dce
dt

11
4ceK

2

3

ðK2

3c
2

e 1 1Þ2
gðPt � XÞ

 !

¼ Fðc; ceÞ �
2gðK2

3c
2

ek�4K
2

1 � k2c
2Þ

ð11K2

3c
2

eÞðK
2

1 1 c2Þ
X

1 2g
K

2

3c
2

eðk4 � k�2Þ
ð11K2

3c
2

eÞ
2 ðPt � XÞ; (9)

dX

dt
¼ k�2K

2

3c
2

e 1 k4

11K2

3c
2

e

ðPt � XÞ � k2c
2
1 k�4K

2

1

K2

1 1 c2
X; (10)

where Pt gives the concentration of pump protein, K2
1 ¼

k�1=k1 and K2
3 ¼ k�3=k3.

The nonbuffering SERCA pump model

To derive the model for the nonbuffering SERCA pump, we

make transitions between the cytosolic and ER sides in the

above model occur instantaneously, so at no time is the

calcium bound by the pump, and not in either compartment.

We do this by taking the limit as the rate constants k2, k�2, k4,
and k�4 tend to infinity. We use the parameter s to denote the
pump speed, and the above rate constants are all proportional

to s. Taking the limit as the rate constants tend to infinity is

then equivalent to taking the limit as s tends to infinity. We

define the pumping capacity of the SERCA pump as the

product of s with Pt, since at steady state the pump flux is

proportional to both these quantities. We wish to keep the

pumping capacity constant, so as the rate constants tend to

infinity, Pt tends to zero, and we keep the product of each of

these rate constants with Pt (and therefore the product of

s with Pt) fixed. The derivation of the model is given in

Appendix B. The model is given by

JSERCA ¼
2ð�K

2

1K
2

3k�2k�4c
2

e 1 k2k4c
2ÞPt

c
2

ec
2
K

2

3ðk21k�2Þ1c
2ðk41k2Þ1c

2

eK
2

1K
2

3ðk�21k�4Þ1K
2

1ðk41k�4Þ
;

(11)

dc

dt
¼ f ðc; ceÞ � JSERCA; (12)

dce
dt

¼ Fðc; ceÞ1 gJSERCA: (13)

THE CELL MODEL

We have based our model of calcium oscillations on the

model of the apical region of pancreatic acinar cells given by

Sneyd et al. (6), but the results are not specific to this cell

type. We added endogenous calcium buffering, removed the

RyR, and used the simpler IP3 receptor model given by

LeBeau et al. (3). (This was done because the RyR and a

more complex IP3 receptor model are not needed to study the

effect of the buffering SERCA pump, and so would increase

the complexity of the model unnecessarily.) The model

details are given below.

Calcium dynamics

When the nonbuffering SERCA pump is used, the differen-

tial equations governing c and ce are given by Eqs. 12 and 13,
where the flux through the SERCA pump, JSERCA, is given
by Eq. 11. If the buffering SERCA pump is used, then the
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differential equations governing c, ce, and the pump variable

X are given by Eqs. 8–10. In both cases, the functions f(c, ce)
and F(c, ce), which represent the other reactions involved in

the cytosol and ER, respectively, are given by

f ðc; ceÞ ¼ kfPIPRðce � cÞ1sðJin � JpmÞ
� kc1 cðbtc � bcÞ1 kc�bc; (14)

and

Fðc; ceÞ ¼ �gkfPIPRðce � cÞ � ke1 ceðbte � beÞ1 ke�be:

(15)

IP3 receptor

This is the model from LeBeau et al. (3), which is based on

the state diagram given in Fig. 3. The parameter p gives the

IP3 concentration:

PIPR ¼ O
4

dO

dt
¼ h1pS� h�1O� h2O

dI1
dt

¼ h2O� ðh3 1 h4ÞI1
dI2
dt

¼ h4I1 � h5I2

S ¼ 1� O� I1 � I2

h1 ¼
a1c

3

b
3

1 1 c
3; h4 ¼

a4p

b4 1 p
:

Endogenous buffering dynamics

The endogenous buffering dynamics in the cytosol and ER

are derived from the reaction scheme,

P1C%
k1

k�
B; (16)

where P is the buffer,C is calcium, and B is buffered calcium.

We use the reaction scheme to write models for the buffer

concentrations in the ER and cytosol. These are given by

dbc

dt
¼ kc1cðbtc � bcÞ � kc�bc

dbe

dt
¼ ke1ceðbte � beÞ � ke�be;

where btc (bte) is the total buffer concentration (both bound

and unbound) in the cytosol (ER) and bc (be) is the con-

centration of buffered calcium in the cytosol (ER). These

terms also appear in Eqs. 14 and 15, respectively, to model

the uptake of calcium by the buffers.

Calcium buffering can be modeled using the fast buffering

approximation, in which case the buffering effect is modeled by

divisionby abuffering factor (12).As shown inAppendixC, this

does not result in conservation of calcium unless a computa-

tionally expensive technique is used when solving the system.

Membrane fluxes

We include two fluxes across the plasma membrane. The value

Jin gives the influx from outside the cell and is of the form given

by Sneyd et al. (6). The value Jpm gives the flux through the

plasma membrane calcium pump and is modeled by a Hill

equation with a Hill coefficient of 2. These fluxes are given by

Jin ¼ 0:21 12p Jpm ¼ Vpmc
2

ðK2

pm 1 c2Þ
:

Parameter values

The parameters used in the model are given in Table 1. The

SERCA pump protein concentration and rate constants are

determined as

Pt ¼ 15=s ðmmol=L CytÞ
k2 ¼ k̃2½ATP�s ¼ 0:6 s ð1=sÞ
k4 ¼ k̃4 s ¼ 0:4 s ð1=sÞ
k�4 ¼ k̃�4½ADP�½P�s ¼ 1:2310

�3
s ð1=sÞ

k�2 ¼
3:76310

�9
k̃2k̃4 s

k̃�4K
2

1K
2

3

¼ 0:97 s ð1=sÞ:

The dimensionless parameter s represents the speed of the

buffering SERCA pump. The SERCA pump rate constants k2,
k�2, k4 and k�4 are each proportional to s. Unless otherwise
stated, we keep the pumping capacity (which we defined in The

Nonbuffering SERCA PumpModel as the product of swith Pt)
constant, sowhenPt is given a value, this determines the value of

s, which in turn determines the value of the rate constants.When

the nonbuffering version of the SERCApump is used, changing

Pt and the rate constants in this manner will not change the

flux through the pump. This is because the flux through the

nonbuffering SERCA pump is proportional to the product of s
and Pt, which does not change. [ATP] is the concentration of

adenosine triphosphate, [ADP] is the concentration of adenosine

diphosphate, and [P] is the concentration of phosphate.

Wehave used theGibbs free energy of hydrolysis ofATP to

constrain the SERCA pump rate constants, and this results in

the expression for k�2 given above. The constraint is given by

FIGURE 3 The state diagram of the IP3 receptor model given by LeBeau

et al. (3). S is the shut state, I1 and I2 are inactive states, and O is the open

state.
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K
2

1K̃2K
2

3K̃4 ¼ e
DG

0
ATP=RT; (17)

where DG0
ATP is the Gibbs free-energy for the hydrolysis of

ATP, R is the universal gas constant, T is temperature, K2 ¼
k�2/k2, and K4 ¼ k�4/k4. We use DGATP

0¼�50KJ/mol,

R¼8.314310�3 KJ/(mol Kelvin), andT¼ 310Kelvin.Using

these values, the condition becomes

k̃�2k̃�4K
2

1K
2

3

k̃2k̃4
¼ e�50=ð8:314�3

3310Þ � 3:76310
�9

0k̃�2 ¼
3:76310

�9
k̃2k̃4

k̃�4K
2

1K
2

3

;

k�2 is then k̃�2s.
It is interesting to note that the value of DG0

ATP determines

the ER calcium concentration at steady state (that is, when

there is no flux through the IP3R). As our model does not

include a leak of calcium from the ER, the steady-state con-

centration in the ER must be the concentration that results in

zero flux through the SERCA pump. This is given by

cess ¼
css

K1K3

ffiffiffiffiffiffiffiffiffiffi
K2K4

p ;

where css is the steady-state concentration in the cytosol. The
product K2

1K2K
2
3K4 is determined by the value of DG0

ATP, so

changing the values of the SERCA pump rate constants will

not affect cess, provided Eq. 17 holds. Intuitively, it makes

sense that the free-energy drop sets that ER steady-state

concentration.

The parameter values for the membrane fluxes were based

on those given by Sneyd et al. (6) and the parameter values for

the IP3 receptor are based on those given by LeBeau et al. (3).

Minor modifications were made to obtain acceptable oscil-

lations. The parameters for the buffering dynamics and the

SERCA pump were chosen so that the model produced

calcium oscillations consistent with those given by the model

of Sneyd et al. (6). The turnover rate of the nonbuffering

SERCA pump (JSERCA/Pt) as a function of cytosolic calcium

concentration (Fig. 4 A), when ce ¼ 10 mmol/L ER, is

compared with the data presented by Dode et al. (11) and

Yano et al. (1). They give the cytosolic calcium concentration

that results in half-maximum activation of the pump as 0.28

mmol/L Cyt and 0.18 mmol/L Cyt, respectively, whereas in

our model half-maximum activation occurs at a cytosolic

calcium concentration of 0.53mmol/LCyt.Yano et al. (1) also

present model data for the turnover rate as a function of ER

calcium, when c¼ 1 mmol/L Cyt. We give the corresponding

data from our model in Fig. 4 C. Their data gives a half-

maximal inhibition by ER calcium of 176 mmol/L ER where

as the corresponding value from our model is 225.8 mmol/L

ER. In Fig. 4 B we give the turnover rate as a function of

cytosolic calciumwhen ce¼ 150mmol/L ER, which is a more

representative ER calcium concentration for our model than

that used in Fig. 4A. Here, half-maximal activation occurs at a

cytosolic calcium concentration of 0.57mmol/L Cyt, which is

close to the value from Fig. 4 A.

RESULTS

Fig. 5 A shows the bifurcation diagram with IP3 concentra-

tion as the bifurcation parameter, and cytosolic calcium

oscillations at IP3¼ 0.5 mmol/L Cyt, where the nonbuffering

TABLE 1 Parameter values of the model

Parameter Value (unit) Parameter Value (unit)

s 0.1 K2
1 0.7 ((mmol/L Cyt)2)

g 10 k̃2 0.0002 ((mmol/L Cyt)�1�s�1)

kf 10 (s�1) K2
3 1.111111 3 10�5

((mmol/L ER)�2)

a1 40 ((mmol/L Cyt)�1�s�1) k̃4 0.4 (s�1)

b1 0.8 (mmol/L Cyt) k̃�4 4 3 10�8 ((mmol/L

Cyt)�2�s�1)

h�1 0.88 (s�1) [ATP] 3000 (mmol/L Cyt)

h2 0.5 (s�1) [ADP] 10 (mmol/L Cyt)

h3 0.5 (s�1) [P] 3000 (mmol/L Cyt)

h5 0.02 (s�1) kc1 1 ((mmol/L Cyt)�1�s�1)

a4 0.06 (s�1) kc� 0.25 (s�1)

b4 0.01 (mmol/L Cyt) ke1 1 ((mmol/L ER)�1�s�1)

Vpm 28.0 ((mmol/L Cyt)�s�1) ke� 80 (s�1)

Kpm 0.425 (mmol/L Cyt) btc 100 (mmol/L Cyt)

bte 375 (mmol/L ER)

FIGURE 4 The turnover rate of the nonbuffering SERCA pump when the pump speed s ¼ 1. (A) The turnover rate as a function of cytosolic calcium

concentration, with ce ¼ 10 mmol/L ER. This ER calcium concentration is unrealistically low, but is used here so the results can be compared with those of

Dode et al. (11) and Yano et al. (1), which use this value. The half-maximum activation occurs at c ¼ 0.53 mmol/L Cyt. (B) The turnover rate as a function of

cytosolic calcium concentration, with ce¼ 150 mmol/L ER. This is a more representative value for ce in our model than the value from panel A. Half-maximum

activation occurs at c¼ 0.57 mmol/L Cyt. (C) The turnover rate as a function of ER calcium concentration, when c¼ 1 mmol/L Cyt. Half-maximum inhibition

is at ce ¼ 225.8 mmol/L ER.
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SERCA pump is used. In Fig. 5 B the buffering SERCA

pump is used with Pt ¼ 15 mmol/L Cyt. This means the

SERCA pump speed s ¼ 1. We see that using the buffering

SERCA pump in place of the nonbuffering SERCA pump

has resulted in a significant decrease in oscillation amplitude

and a small increase in period, at this value of Pt.

We compared the SERCA pump clearance rate and the

amplitude and period of the oscillations with the experimental

results given by Dupont et al. (13) from an hepatocyte. We

estimated the clearance rate by measuring the rate at which the

cytosolic calcium concentration decreases after the peak of an

oscillation. From the experimental results we measured a

clearance rate of 0.08 mmol/L Cyt/s, an amplitude of 0.93

mmol/L Cyt, and a period of 78.6 s. From our model results,

using the nonbuffering SERCA pump, wemeasured a clearance

rate of 0.35mmol/LCyt/s, an amplitude of 1.82mmol/LCyt, and

a period of 125.2 s. Using the buffering SERCA pump (Pt¼ 15

mmol/LCyt, s¼ 1), wemeasured a clearance rate of 0.02mmol/

LCyt/s, anamplitudeof0.58mmol/LCyt, andaperiodof137.9s.

The clearance rate and amplitude from the experimental

results fall between the model results when using the

buffering and nonbuffering SERCA pump.

In Fig. 5 C we used the buffering SERCA pump and

increased the concentration of SERCA pump protein, Pt, to

30 mmol/L Cyt. The pump speed s is decreased to 0.5 so that
the product of swith Pt (the pumping capacity of the SERCA

pump) is not changed. The amplitude of calcium oscillations

decreases as the SERCA pump protein (and thus the

buffering capacity of the SERCA pump) increases. This is

because when the buffering capacity increases, more calcium

will be bound to the buffers during oscillations, lowering the

concentration of unbound calcium in the cytosol and ER.

When Pt is high enough, the oscillations disappear.

When the buffering SERCA pump is used, increasing the

pump protein concentration while keeping the pumping ca-

pacity constant (i.e., while decreasing s) has resulted in cyto-
solic calcium oscillations with a decreased amplitude and

increased period. However, if we increase the pump protein

FIGURE 5 Bifurcation diagrams

showing cytosolic calcium concen-

tration with IP3 concentration as the

bifurcation parameter, and cytosolic

calcium oscillations when the IP3 con-

centration is 0.5 mmol/L Cyt. Shaded

lines in the bifurcation diagrams denote

unstable branches and H denotes a

Hopf bifurcation. The curve of steady

states is labeled ss and the maximum

value of c over an oscillation is labeled

osc. (A) The nonbuffering SERCA

pump is used with Pt ¼ 15 mmol/L

Cyt and pump speed s ¼ 1. (B) The

buffering SERCA pump is used with

Pt ¼ 15 mmol/L Cyt and pump speed

s ¼ 1. (C) The buffering SERCA pump

is used with Pt ¼ 30 mmol/L Cyt and

pump speed s ¼ 0.5.
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concentration and keep the pump speed, s, constant as in Fig.
6, then the amplitude of the oscillations initially increases

and then decreases, and the period decreases. The increase in

oscillation amplitude as Pt is increased from 15 mmol/L Cyt

to 20 mmol/L Cyt is caused by the increased pumping capac-

ity outweighing the buffering effect of the pump. At higher

values of Pt, the buffering effect outweighs the increased

pumping capacity and the oscillation amplitude decreases.

The increased pumping capacity of the SERCA pump has

resulted in a higher resting ER concentration as well as

higher amplitude calcium oscillations in the ER. These

results have been compared to those of Falcke et al. (14) in

Discussion.

ADAPTATION

We investigated the reaction of the buffering SERCA pump

to a change in cytosolic calcium concentration from 0 to

1 mmol/L Cyt, as shown in the inset in Fig. 7 A. The ER

calcium concentration is fixed at 185.9 mmol/L ER and Pt ¼
15 mmol/L Cyt. The calcium flux from the pump into the ER

has been scaled by the factor g so that it is measured in the

units mmol/L Cyt, and is comparable to the flux from the

cytosol onto the pump, which is measured in the same units.

In Fig. 7 A, we give the calcium flux from the cytosol onto

the pump, which is given by

2c
2
K

2

1ðk2 � k�4Þ
ðK2

1 1 c
2Þ2

X1
2ðc2k4 � k�2K

2

3K
2

1c
2

eÞ
ð11K2

3c
2

eÞðK
2

1 1 c2Þ
ðPt � XÞ

1
4cK

2

1X

ðK2

1 1 c
2Þ2

dc

dt
:

In Fig. 7 B, we give the calcium flux from the pump into

the ER, which is given by

�2gðK2

3c
2

ek�4K
2

1 � k2c
2Þ

ð11K2

3c
2

eÞðK
2

1 1 c2Þ
X1 2g

K
2

3c
2

eðk4 � k�2Þ
ð11K

2

3c
2

eÞ
2 ðPt � XÞ:

When the calcium concentration in the cytosol is stepped

up, the pump begins to extract calcium from the cytosol and

pump it into the ER. The difference between the rate at which

cytosolic calcium is bound to the pump and the rate at which

calcium is released into the ER, is the rate at which calcium

is being bound to or released from the pump’s buffering

mechanism. Initially calcium builds up on the pump and the

flux from the cytosol is greater than the flux into the ER.

Eventually the pump adapts to the changed cytosolic calcium

concentration and reaches a new steady state where the

fluxes on and off the pump are equal and the amount of

calcium bound to the pump remains constant.

FUTILE CYCLING AT REST

When the cell is at rest, the SERCA pump may do work to

balance a leak from the ER and maintain a constant calcium

concentration inside the ER. This is referred to as ‘‘futile

cycling at rest’’. Various groups (15–17) have presented

evidence that this cycling does exist in real cells. Alvarez

et al. (15) claim that futile cycling may result in the loss of up

to 3% of the cell’s energy production. Machaca and Hartzell

(17) propose that although the cycle is futile in refilling the

ER, it helps maintain elevated calcium levels in the cytosol

by slowing the movement of calcium ions toward the plasma

membrane. Contrary to these findings, Satoh et al. (18) show

that when calcium is removed from the outside of a

ventricular cell the SR retains its calcium content for many

minutes (18), suggesting the flux of calcium out of the SR is

very small. A very low rate of futile cycling seems

advantageous because it reduces the energy used by the cell.

FIGURE 6 Bifurcation diagrams

showing the effect of increasing Pt

from 15 mmol/L Cyt to 20 mmol/L Cyt,

30 mmol/L Cyt, and 40 mmol/L Cyt

while keeping s fixed at 1. The buffer-

ing SERCA pump is used here. Shaded

lines denote unstable branches and H
denotes a Hopf bifurcation. The curve

of steady states is labeled ss and the

maximum value over an oscillation is

labeled osc. (A) Cytosolic calcium

concentration. (B) ER calcium concen-

tration. (C) Oscillation period.
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Our model does not contain a leak from the ER, so there is

no futile cycling at rest. This means that the flux through the

SERCA pump is zero at steady state. If the SERCA pump

was modeled using a unidirectional pump, such as

JSERCA ¼ Vsercac

Kserca 1 c
3

1

ce
; (18)

which is given by Sneyd et al. (6), then we could only

achieve zero flux if c ¼ 0 or ce is infinite at steady state,

neither of which are realistic conditions. The SERCA pump

presented here is bidirectional, so it is possible to achieve

zero net flux through the pump at finite and nonzero calcium

concentrations. Note that when there is zero net flux, there is

also zero net ATP consumption, because the ATP that is

consumed due to the inward flux is balanced by the ATP

produced due to the outwards flux. If we set the IP3
concentration to 0 in our model so the calcium concentra-

tions relax to a steady state, we find these steady-state

concentrations are c ¼ 0.036 mmol/L Cyt and ce ¼ 185.9

mmol/L ER. Fig. 8 shows the flux through the nonbuffering

SERCA pump (labeled Bidirectional pump) and the pump

given by Eq. 18 (labeled Unidirectional pump) as cytosolic
calcium concentration varies and ER calcium concentration

is fixed at ce ¼ 185.9 mmol/L ER. Equation 18 was fitted to

the nonbuffering SERCA pump over the range c ¼ 0.1 to 10

mmol/L Cyt. We see that our SERCA pump achieves zero

flux at a nonzero cytosolic calcium concentration (in fact, at

c ¼ 0.036 mmol/L Cyt).

DISCUSSION

In the past, the SERCA pump has frequently been modeled

using the Hill equation (2–4) or modifications of the Hill

equation that account for modulation of the pump flux by the

ER calcium concentration (5,6). Equation 18 is an example

of such a model. This approach has been taken because a

simple model for the SERCA pump has often been regarded

as adequate. However, the SERCA pump model may be just

as important as the models of ER calcium release and

warrants greater attention.

Various models of the SERCA pump have been proposed.

Maclennan et al. (9) have described the SERCA pump using

a four-state model involving analogous transitions to the

model presented here (Fig. 2 A). The transitions involved are
as follows. First, calcium is bound on the cytosolic side of

the ER membrane. In the next transition, the phosphorylation

of the pump as ATP is converted to ADP releases energy and

enables the pump to change conformation so that the ex-

posed binding site moves from the cytosolic side to the ER

side. Calcium bound to the pump is then released into the

ER. Lastly the pump undergoes dephosphorylation and

returns to its original conformation. Others have proposed

schemes that involve more transitions. Stokes and Green (10)

give a table of the reactions involved in calcium transport

across the membrane. The mechanism they describe is es-

sentially the same as that described above, with the dif-

ference being that the transitions have been broken into a

larger number of reactions. Inesi and de Meis (19) give a

more complex scheme in which calcium binding and

dissociation occurs over a sequence of steps and there is a

branched pathway for ADP dissociation. A six-state model

describing the pump reactions has been widely used

(1,11,20). This again involves essentially the same transi-

tions as the model given by Maclennan et al. (9), but the

phosphorylation of the pump and the change of conforma-

tion from the cytosolic to the ER side have been separated

into two transitions, as have the dephosphorylation of the

FIGURE 7 The reaction of the buffering

SERCA pump to a change in cytosolic

calcium concentration. The ER calcium

concentration is fixed at 185.9 mmol/L ER.

Pt ¼ 15 mmol/L Cyt and the cytosolic

calcium concentration is stepped up from 0

to 1 mmol/L Cyt as shown in the inset in

panel A. (A) The flux of calcium from the

cytosol onto the SERCA pump. (B) The

flux of calcium from the pump, into the ER.

Note that the units used are mmol/L Cyt/s

for comparison with the plot in panel A.

FIGURE 8 A comparison of the flux through the nonbuffering SERCA

pump (which is a bidirectional pump) and the unidirectional pump given by

Eq. 18. The value ce is held constant at 185.9 mmol/L ER. Equation 18 was

fitted to our nonbuffering SERCA pump over c ¼ 0.1 to 10 mmol/L Cyt.

Note that a log scale is used on the horizontal axis.
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pump and the change of conformation from the ER to the

cytosolic side. For modeling purposes, the four-state model

of Maclennan et al. (9) is adequate for representing the

pumping and buffering effects of the pump. More complex

models are not necessary to reproduce these essential

properties of the pump, so have not been used here.

Yano et al. (1) present a model of calcium oscillations in

pancreatic acinar cells, which includes a SERCA pump model

based on a reaction cycle involving six transitions. Apart from

a lesser number of transitions, our model differs from theirs in

that our transition rates during calcium binding are propor-

tional to the square of the calcium concentration, since there

are two calcium ions being bound. The model of Yano et al.

(1) has the transition rates for calcium binding (both on the

cytosolic and ER side of the membrane) given as saturating

functions of the calcium concentration. The physiological

mechanism underlying this approach is not given. Also, the

transition rate for the change of conformation from the ER to

the cytosolic side in the model of Yano et al. (1) is dependent

on the ER calcium concentration, so that an increase in

calcium inhibits the transition. Their justification for this is

that the main SERCA subtype in pancreatic acinar cells is

SERCA2b, but their model was based on that of Dode et al.

(11), which was based on experimental data relating to the

subtype SERCA1a. They believe that data relating to the

SERCA2b subtype (5,21) indicates that SERCA2b responds

to the ER calcium concentration using a different mechanism

from that of SERCA1a, and they hypothesize that there is

another reaction in the cycle that is affected by ER calcium.

They then determine that this reaction is most likely the

transition from the ER to the cytosolic side. Again, the

physiological mechanism underlying the ER calcium depen-

dence of the transition is not given.

Experimental measurements have been made to estimate

the concentration of SERCA pump protein present in cells.

The results of Bers and Stiffel (22) suggest the concentration

in ventricular cells is ;20 mmol/L Cyt, while Levitsky et al.

(23) estimate 14 mmol/L Cyt in Guinea-pig ventricle and

Feher and Briggs (24) estimated 47 mmol/L Cyt in dog

ventricle. Bers (7) estimates the concentration in ventricular

cells to be in the range of 15–75 mmol/L Cyt depending on

species. These results all suggest that the amount of SERCA

pump protein is large, and therefore the pump could act as a

significant calcium buffer. Teucher et al. (25) states that after

troponin C, the SERCA pump is the most prominent

cytosolic calcium buffer. This raises the question of what

effect the inclusion of the buffering effect of the SERCA

pump may have in a model.

We have derived a system of equations for modeling a

SERCA pump that will act as a calcium buffer. We began with

the four-state diagram in Fig. 2 A. We wrote down a system of

equations based on the state diagram, using the law of mass

action. It is preferable not to use the full four-state model in the

whole-cell model, since it slows computations. This is because

of the number of additional differential equations involved,

and because if the transitions are fast, a small time-step is

needed during numerical simulations. We have therefore re-

duced the four-state model to a two-state model, ensuring that

the buffering property of the pump is retained. This is done by

assuming that the reactions where calcium binding and release

take place are fast. After reducing the model under this

assumption, the buffering effect of the pump is now modeled

by a buffering factor that modulates the rate at which calcium

is transported. To compare the buffering SERCA pump with a

pump that does not act as a buffer, we performed a further

reduction. This was done by assuming that transitions between

the cytosolic and ER sides occur infinitely fast, so the pump

speed s tends to infinity. The length of time during which

calcium is buffered by the pump then tends to zero. The

product of the speed and pump protein concentration is kept

constant so that the pumping capacity is not altered.

To illustrate the effect of the buffering SERCApump, it has

been incorporated into a model of calcium dynamics in a

nonexcitable cell. Fig. 5 compares the cytosolic calcium

oscillations that occur when the nonbuffering SERCA pump

is used, with the oscillations that occur when the buffering

SERCApump is used, and the concentration of SERCApump

protein is 15 mmol/L Cyt. We see that using the buffering

SERCA pump has resulted in a significant decrease in the

amplitude of oscillations, and a small increase in the period.

Falcke et al. (14) have investigated the effect of over-

expression of SERCA pumps on the period and amplitude of

intracellular calcium waves in Xenopus oocytes. In their

model, they use the assumption that increasing SERCA

pump density increases the resting ER calcium concentra-

tion. Under these conditions they found that an increased

SERCA pump density decreased the period and increased the

amplitude of calcium waves. These findings are in agreement

with experimental results (26). Falcke et al. (14) also found

that increasing pump density and keeping the resting ER

concentration fixed increased the period and decreased the

amplitude of calcium waves.

In the model presented here, increasing the SERCA pump

density while decreasing the pump speed does not alter the

resting ER calcium concentration because pumping capacity

remains constant. Using the buffering SERCA pump, the

increased pump density increases the period of cytosolic

calcium oscillations, and decreases the amplitude. This is in

agreement with the results of Falcke et al. (14), where they

keep the resting ER concentration fixed.

If we use the buffering SERCA pump and increase pump

density while keeping the pump speed constant, as in Fig. 6,

then the resting ER calcium concentration will increase (see

Fig. 6 B). In this case, the amplitude of cytosolic calcium

oscillations initially increases, but then decreases. This de-

crease is a result of the increased buffering capacity of the pump

outweighing the increased pumping capacity. The oscillation

period decreases as the pump density is increased. If the pump

density is increased, with pump speed kept constant, using the

nonbuffering SERCA pump, then the oscillations have a
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decreased period and increased amplitude (results not shown),

in agreement with the results of Falcke et al. (14).

The model of Falcke et al. (14) does not take into account

the buffering effect of the SERCA pump and the results from

their model do not agree with the results from ours when the

buffering SERCA pump is used, unless the increase in pump

density is small. However, their results do agree with exper-

imental results from Xenopus oocytes. The buffering effect

of the pump may be less important in oocytes compared to

other cells types.

Fig. 7 shows the pump’s reaction to a step in the cyto-

solic calcium concentration. Initially there is a large flux of

calcium from the cytosol onto the pump, and a smaller flux

from the pump into the ER. The difference between these

fluxes is the rate at which calcium is being bound to the

pump. The flux from the cytosol and the flux into the ER tend

toward the same steady-state value as the pump adapts to the

changed environment.

We have looked at the issue of futile cycling across the ER

membrane while the cell is at rest. This consists of a leak of

calcium out of the ER that is balanced by an influx of calcium

through the SERCA pump, requiring the use of energy. This

leads to the hypothesis that the amount of futile cycling at rest

should be small or even zero, to avoid wasting energy. If the

SERCA pump ismodeled by a Hill equation, or a modification

of the Hill equation such as Eq. 18, then zero futile cycling can

only be achieved at unphysiological calcium concentrations. A

model such as the one presented here, which is based on a

reaction cycle that can operate in both directions, is able to

achieve zero futile cycling at rest, without requiring the

cytosolic or ER calcium concentrations to be unrealistic.

In Appendix C, we describe the fast buffering approxima-

tion. This uses the assumption that the buffering kinetics are

fast to reduce the effect of a buffer to division by a buffering

factor. The differential equation governing the buffer con-

centration is then not needed, which simplifies the model. We

show that if the discretized equations governing the system

are given explicitly, then the fast buffering approximationwill

not conserve calcium. If the equations are given implicitly

conservation can be achieved, but at the expense of a longer

computation time.We then show that the loss of conservation

does not make a significant difference to the solution in the

model presented here.

APPENDIX A: BUFFERING SERCA PUMP
MODEL DERIVATION

Here we give the derivation for the buffering SERCA pump model given by

Eqs. 8–10. We begin with the system of equations given by Eqs. 1–7 then

simplify this model by assuming the transitions between X1 and X2 are fast,

and the transitions between Y1 and Y2 are fast, so that k1c
2X1 ¼ k�1X2 and

k3Y2 ¼ k�3ce
2Y1. We let X ¼ X1 1 X2 and Y ¼ Y1 1 Y2. Then,

X ¼ X1
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Note that K2
1 ¼ k�1=k1 and K2

3 ¼ k�3=k3. The differential equation for the

cytosolic calcium concentration is derived as
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Similarly, the differential equation for the ER calcium concentration is

derived as

dce
dt
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The differential equation for the pump variable X is derived as
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We substitute the expression for ðdX=dtÞ into the expressions for ðdc=dtÞ
and ðdce=dtÞ to obtain the system of differential equations for modeling the

SERCA pump:
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(19)
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APPENDIX B: NONBUFFERING SERCA PUMP
MODEL DERIVATION

Here we give the derivation for the nonbuffering SERCA pump model given

by Eqs. 11–13. We begin with our model for the buffering SERCA pump,

then assume that the speed of the transitions between the cytosolic and ER

sides of the membrane are infinitely fast, so the length of time during which

calcium is buffered by the pump becomes zero. To do this, we take the limit,

since the rate constants k2, k�2, k4, and k�4 tend to infinity all at the same

rate. We wish to keep the pumping capacity constant, so the rate constants’

products with Pt remains fixed. The value Pt therefore tends toward zero. To

perform this process, we first nondimensionalize the system given by Eqs.

19–21 using the dimensionless variables of

X ¼ X

Pt

�cce ¼ ceK3 �cc ¼ c

K1

t ¼ k�1t:

We ignore the terms f(c, ce) and F(c, ce), because they are not affected by the

following process. The system becomes
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where

e¼ k�1

k2
; l1 ¼

K1

Pt

; l2 ¼
1

K3Pt

; K2 ¼
k�2

k2
and K4 ¼

k�4

k4
:

The values el1 ¼ c1 and el2 ¼ c2 are fixed. We now make k4, k�4, k2, and

k�2 tend to infinity with their ratios constant, and Pt tends to zero. This

means E becomes small. We expand the solutions as

X¼X01eX11 � � �
�cc¼ �cc01e�cc11 � � �
�cce ¼ �cce0 1e�cce1 1 � � � :

Now we substitute these expressions into the nondimensionalized

equations, and take the limit as E tends to zero, to find the O(1) equations.

These are
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Note that if we had taken the pump flux out of the cytosol to be

JSERCA ¼ 2k2X2�2k�2Y2
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and then assumed the transition between X and Y was fast (see Fig. 2 B), so
that
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then this model gives the same result as solving Eq. 24 for �XX0,

substituting this into Eqs. 22 and 23, then redimensionalizing. Upon

adding the terms f(c, ce) and F(c, ce) that were ignored during the

derivation, the result is

JSERCA ¼ 2ð�K
2

1K
2

3k�2k�4c
2

e 1 k2k4c
2ÞPt

c
2

ec
2
K

2

3ðk2 1 k�2Þ1 c
2ðk4 1 k2Þ1 c

2

eK
2

1K
2

3ðk�2 1 k�4Þ1K
2

1ðk4 1 k�4Þ
dc

dt
¼ f ðc; ceÞ � JSERCA

dce
dt

¼ Fðc; ceÞ1 gJSERCA:
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APPENDIX C: CONSERVATION AND THE FAST
BUFFERING APPROXIMATION

The chemical reaction for calcium buffering can be described by the reaction

scheme given in Eq. 16. If b and c denote the concentrations of buffered and
free calcium, respectively, then we can use the reaction scheme to write a

general model of calcium buffering as

dc

dt
¼ f ðcÞ1k�b� k1cðbt�bÞ;

db

dt
¼ �k�b1k1cðbt� bÞ;

where bt is the total buffer concentration, and f(c) denotes the other reactions

involving free calcium.

If we assume that the kinetics are fast (i.e., k1 and k� are large), then we

can take b to be in quasi-steady state, and so

k�b� k1cðbt �bÞ ¼ 0:

Solving for b, we find

b¼ btc

K1c
;

where K ¼ k�/k1. Then

dc

dt
1
db

dt
¼ ð11uÞdc

dt
¼ f ðcÞ;

where

u¼ btK

ðK1cÞ2
:

Then

dc

dt
¼ f ðcÞ
11u

:

So the buffering effect is approximated by division by the buffering factor

11 u. However, care needs to be taken when using this approximation once

time has been discretized, if total calcium is to be conserved. If

dc

dt
1
db

dt
¼ 0;

where b at time n is determined from c at time n using bn ¼ ðbtcnÞ=ðK1cnÞ
(superscripts denote time), then c1 b, which is the total amount of calcium,

should be conserved. If we use the approximation

dc

dt
¼ c

n11� c
n

Dt

and an analogous approximation for ðdb=dtÞ, then we can determine the

buffering term in the time-discretized model,

c
n11� c

n

Dt
1
b
n11� b

n

Dt
¼ c

n11� c
n

Dt
1

bt

Dt

c
n11

K1c
n11�

c
n

K1c
n

� �

¼ c
n11� c

n

Dt
1

bt

Dt

c
n11

K� c
n
K

ðK1c
n11ÞðK1c

nÞ

� �

¼ c
n11� c

n

Dt
11

Kbt

ðK1c
n11ÞðK1c

nÞ

� �
;

so the buffering term is

11
Kbt

ðK1 c
n11ÞðK1 c

nÞ
;

FIGURE 9 Comparison between solu-

tions when solving the model equations

explicitly and implicitly, where the fast

buffering approximation is used to model

the endogenous buffering. The nonbuffer-

ing SERCA pump has been used here. (A)

The difference between the sum of the

cytosolic, ER and buffered calcium, and the

input into the cell from the cell exterior.

This quantity should be conserved. We give

the results when the implicit equations are

used and when the explicit equations are

used. (B) Cytosolic calcium oscillations.

The results from the implicit and explicit

equations are plotted on the same axes, but

are indistinguishable. (C) The difference

between the cytosolic calcium concentra-

tions when using the implicit and explicit

equations.
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which contains cn11. This means that we lose conservation if the equations

for determining the solution at the next time-step are given explicitly—that

is, if we use a buffering term of the form

11
Kbt

ðK1 c
nÞðK1 c

nÞ;

where the buffering term contains only c at time n. If conservation is to be

achieved, the equations must be given implicitly, and more work must be

done to find the solution at each time-step.

We now show that this loss or gain of calcium does not have a significant

impact on the system. We use the model presented here with the non-

buffering SERCA pump, but we replace the endogenous buffering terms in

the cytosol and ER with the buffering factors that result from the fast

buffering approximation. That is, rather than an equation of the form

dc

dt
¼ gðc; ceÞ � kc1 cðbtc � bcÞ1 kc�bc

for modeling cytosolic calcium, we use the equation

dc

dt
11

btcKc

ðKc 1 cÞ2
� �

¼ gðc; ceÞ;

where Kc ¼ kc–/kc1. The equation for modeling ER calcium is analogous.

Let cn and cne denote the concentrations of cytosolic and ER calcium,

respectively, at time-step n. If the equation for solving for cn11 is given

explicitly, then it will have the form

c
n11 ¼ c

n
1Dtgðcn; cneÞ= 11

btcKc

ðKc 1 c
nÞ2

� �
:

If we wish to conserve calcium, then we need to solve the implicit equation

c
n11 ¼ c

n
1Dtgðcn; cneÞ= 11

btcKc

ðKc 1 c
nÞðKc 1 c

n11Þ

� �
:

The equations for ER calcium are analogous.

Fig. 9 A shows that when using the implicit equations to iterate each

time-step, calcium is conserved. That is, the change in the quantity

c1ð1=gÞce1bc1ð1=gÞbe is equal to the input from the cell exterior. When

using the explicit equations, there is a loss of calcium. However, from Fig. 9,

B and C, we see that this loss has caused very little difference in the calcium

oscillations.
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